Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


Temporal-spatial expression of two Paracentrotus lividus cell surface proteins., Romancino DP., Cell Biol Int. January 1, 1998; 22 (4): 305-11.


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.


Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo., Benink H., Development. September 1, 1997; 124 (18): 3461-70.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W., Mech Dev. December 1, 1996; 60 (2): 185-95.


Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus., Kitajima T., Dev Growth Differ. December 1, 1996; 38 (6): 687-95.


Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos., Ghiglione C., Development. October 1, 1996; 122 (10): 3067-74.


Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars., Amemiya S., Dev Genes Evol. September 1, 1996; 206 (2): 125-35.


Postembryonic segregation of the germ line in sea urchins in relation to indirect development., Ransick A., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6759-63.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A., Development. October 1, 1995; 121 (10): 3215-22.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis., Harkey MA., Mech Dev. May 1, 1992; 37 (3): 173-84.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus., Livingston BT., Dev Biol. December 1, 1991; 148 (2): 473-80.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


The synthesis and secretion of collagen by cultured sea urchin micromeres., Benson S., Exp Cell Res. May 1, 1990; 188 (1): 141-6.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


[Phorbol ester disrupts the cleavage pattern in sea urchin embryos]., Bozhkova VP., Ontogenez. January 1, 1990; 21 (2): 160-6.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma., Wray GA., Dev Biol. April 1, 1989; 132 (2): 458-70.


Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins., Richardson W., Dev Biol. March 1, 1989; 132 (1): 266-9.


The isotopic effects of D2O in developing sea urchin eggs., Sumitro SB., Cell Struct Funct. February 1, 1989; 14 (1): 95-111.


Evans blue treatment promotes blastomere separation and twinning in Lytechinus pictus embryos., Johnson LG., Dev Biol. January 1, 1989; 131 (1): 276-9.


The origin of spicule-forming cells in a ''primitive'' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells., Wray GA., Development. June 1, 1988; 103 (2): 305-15.


Coordinate accumulation of five transcripts in the primary mesenchyme during skeletogenesis in the sea urchin embryo., Harkey MA., Dev Biol. February 1, 1988; 125 (2): 381-95.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Histone modifications accompanying the onset of developmental commitment., Chambers SA., Dev Biol. December 1, 1987; 124 (2): 523-31.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Sea urchin maternal and embryonic U1 RNAs are spatially segregated in early embryos., Nash MA., J Cell Biol. May 1, 1987; 104 (5): 1133-42.


A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression., Benson S., Dev Biol. April 1, 1987; 120 (2): 499-506.


Distributions of H+,K+-ATPase and Cl-,HCO3(-)-ATPase in micromere-derived cells of sea urchin embryos., Mitsunaga K., Differentiation. January 1, 1987; 35 (3): 190-6.


Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus., Mitsunaga K., J Biochem. December 1, 1986; 100 (6): 1607-15.


Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules., Mitsunaga K., Cell Differ. June 1, 1986; 18 (4): 257-62.


The organic matrix of the skeletal spicule of sea urchin embryos., Benson SC., J Cell Biol. May 1, 1986; 102 (5): 1878-86.


The fate of the small micromeres in sea urchin development., Pehrson JR., Dev Biol. February 1, 1986; 113 (2): 522-6.


Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells., Iwata M., Cell Differ. July 1, 1985; 17 (1): 57-62.


Unequal cleavage and the differentiation of echinoid primary mesenchyme., Langelan RE., Dev Biol. June 1, 1985; 109 (2): 464-75.


Mass isolation and culture of sea urchin micromeres., Harkey MA., In Vitro Cell Dev Biol. February 1, 1985; 21 (2): 108-13.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???