Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH., Methods Cell Biol. January 1, 2004; 74 273-85.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA., Development. July 1, 2003; 130 (13): 2917-28.              


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins., Izumi-Kurotani A., Adv Space Biol Med. January 1, 2003; 9 83-99.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus., Illies MR., Dev Genes Evol. October 1, 2002; 212 (9): 419-31.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A., Dev Biol. June 1, 2002; 246 (1): 132-47.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH., Dev Biol. June 1, 2002; 246 (1): 162-90.


A regulatory gene network that directs micromere specification in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2002; 246 (1): 209-28.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC., Development. April 1, 2002; 129 (8): 1945-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo., Takata H., Zoolog Sci. March 1, 2002; 19 (3): 299-307.


Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus., Shih LJ., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2002; 131 (2): 143-51.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM., Dev Biol. November 1, 2001; 239 (1): 132-47.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR., Development. December 1, 2000; 127 (23): 5113-22.


Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis., Urry LA., Dev Biol. September 1, 2000; 225 (1): 201-13.


Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton., Kitajima T., Dev Growth Differ. August 1, 2000; 42 (4): 295-306.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM., Dev Biol. February 1, 2000; 218 (1): 1-12.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


Competence of the animal cap to react with the inductive signal from micromere descendants in the hatching blastula stage of echinoid embryos., Ishizuka Y., Zygote. January 1, 2000; 8 Suppl 1 S81.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos., Cervello M., Dev Growth Differ. December 1, 1999; 41 (6): 769-75.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micromere-derived cells isolated from sea urchin embryos., Kuno S., Dev Growth Differ. April 1, 1999; 41 (2): 193-9.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos., Kominami T., Dev Growth Differ. October 1, 1998; 40 (5): 545-53.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.


Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos., Holy J., J Toxicol Environ Health A. June 26, 1998; 54 (4): 319-33.


Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus., Martins GG., Dev Biol. June 15, 1998; 198 (2): 330-42.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???