Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (705) Expression Attributions Wiki
ECB-ANAT-169

Papers associated with germ layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Neural expression of the Huntington''s disease gene as a chordate evolutionary novelty., Kauffman JS., J Exp Zool B Mol Dev Evol. June 15, 2003; 297 (1): 57-64.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation., Romano LA., Development. September 1, 2003; 130 (17): 4187-99.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Characterization of the upstream region that regulates the transcription of the gene for the precursor to EGF-related peptides, exogastrula-inducing peptides, of the sea urchin Anthocidaris crassispina., Horii K., Comp Biochem Physiol B Biochem Mol Biol. September 1, 2003; 136 (1): 15-26.


Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos., Kenny AP., Dev Biol. September 15, 2003; 261 (2): 412-25.


Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos., Cavalieri V., Dev Biol. October 1, 2003; 262 (1): 107-18.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Developmental gene regulatory network architecture across 500 million years of echinoderm evolution., Hinman VF., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13356-61.


Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo., Zito F., Dev Biol. December 1, 2003; 264 (1): 217-27.


Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma., Zhou N., J Exp Zool B Mol Dev Evol. December 15, 2003; 300 (1): 58-71.


Divergent patterns of neural development in larval echinoids and asteroids., Nakajima Y., Evol Dev. January 1, 2004; 6 (2): 95-104.


On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo., Poustka AJ., Evol Dev. January 1, 2004; 6 (4): 227-36.


Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens., Morris VB., Int J Dev Biol. February 1, 2004; 48 (1): 17-22.


Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo., Kiyomoto M., Dev Growth Differ. February 1, 2004; 46 (1): 107-14.


Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo., Duboc V., Dev Cell. March 1, 2004; 6 (3): 397-410.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo., Fernandez-Serra M., Dev Biol. April 15, 2004; 268 (2): 384-402.


Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo., Takacs CM., Dev Biol. May 1, 2004; 269 (1): 152-64.


Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene., Coffman JA., BMC Biol. May 7, 2004; 2 6.      


An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network., Yuh CH., Dev Biol. May 15, 2004; 269 (2): 536-51.


Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled., Weitzel HE., Development. June 1, 2004; 131 (12): 2947-56.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


A genetic regulatory network for Xenopus mesendoderm formation., Loose M., Dev Biol. July 15, 2004; 271 (2): 467-78.


Gene regulatory network controlling embryonic specification in the sea urchin., Oliveri P., Curr Opin Genet Dev. August 1, 2004; 14 (4): 351-60.


Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium., Kominami T., Dev Growth Differ. August 1, 2004; 46 (4): 309-26.


Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus., Coffman JA., Dev Biol. September 1, 2004; 273 (1): 160-71.


LiCl inhibits the establishment of left-right asymmetry in larvae of the direct-developing echinoid Peronella japonica., Kitazawa C., J Exp Zool A Comp Exp Biol. September 1, 2004; 301 (9): 707-17.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O., Dev Biol. September 15, 2004; 273 (2): 226-43.


Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene., Dayal S., Dev Biol. September 15, 2004; 273 (2): 436-53.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R., Dev Biol. October 15, 2004; 274 (2): 438-51.


Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins)., Hibino T., Dev Genes Evol. November 1, 2004; 214 (11): 546-58.


Self-organization of vertebrate mesoderm based on simple boundary conditions., Green JB., Dev Dyn. November 1, 2004; 231 (3): 576-81.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2., Minsuk SB., Evol Dev. January 1, 2005; 7 (4): 289-300.


Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma., Wilson KA., Evol Dev. January 1, 2005; 7 (5): 401-15.


Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma., Wilson KA., Evol Dev. January 1, 2005; 7 (5): 416-28.


The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence., Buznikov GA., Neurochem Res. January 1, 2005; 30 (6-7): 825-37.


Expression of AmHNF6, a sea star orthologue of a transcription factor with multiple distinct roles in sea urchin development., Otim O., Gene Expr Patterns. February 1, 2005; 5 (3): 381-6.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo., Range RC., Dev Biol. March 1, 2005; 279 (1): 252-67.


Fibrous component of the blastocoelic extracellular matrix shapes epithelia in concert with mesenchyme cells in starfish embryos., Kaneko H., Dev Dyn. April 1, 2005; 232 (4): 915-27.


Gene regulatory networks for development., Levine M., Proc Natl Acad Sci U S A. April 5, 2005; 102 (14): 4936-42.


Xenopus as a model system to study transcriptional regulatory networks., Koide T., Proc Natl Acad Sci U S A. April 5, 2005; 102 (14): 4943-8.


Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer., Kiyama T., Dev Biol. April 15, 2005; 280 (2): 436-47.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???