Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (281) Expression Attributions Wiki
ECB-ANAT-223

Papers associated with embryonic skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6

Sort Newest To Oldest Sort Oldest To Newest

Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus., Mitsunaga K., J Biochem. December 1, 1986; 100 (6): 1607-15.


Inhibition of cell migration in sea urchin embryos by beta-D-xyloside., Solursh M., Dev Biol. December 1, 1986; 118 (2): 325-32.


A large calcium-binding protein associated with the larval spicules of the sea urchin embryo., Iwata M., Cell Differ. December 1, 1986; 19 (4): 229-36.


The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads., Ettensohn CA., Dev Biol. October 1, 1986; 117 (2): 380-91.


The organic matrix of the skeletal spicule of sea urchin embryos., Benson SC., J Cell Biol. May 1, 1986; 102 (5): 1878-86.


Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices., Katow H., Exp Cell Res. February 1, 1986; 162 (2): 401-10.


Migration of sea urchin primary mesenchyme cells., Solursh M., Dev Biol (N Y 1985). January 1, 1986; 2 391-431.


Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro., Karp GC., Dev Biol. December 1, 1985; 112 (2): 276-83.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Role of fibronectin in primary mesenchyme cell migration in the sea urchin., Katow H., J Cell Biol. October 1, 1985; 101 (4): 1487-91.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells., Iwata M., Cell Differ. July 1, 1985; 17 (1): 57-62.


A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin., Carson DD., Cell. June 1, 1985; 41 (2): 639-48.


Primary differentiation and ectoderm-specific gene expression in the animalized sea urchin embryo., Nemer M., Dev Biol. June 1, 1985; 109 (2): 418-27.


Unequal cleavage and the differentiation of echinoid primary mesenchyme., Langelan RE., Dev Biol. June 1, 1985; 109 (2): 464-75.


In vitro fusion and separation of sea urchin primary mesenchyme cells., Karp GC., Exp Cell Res. June 1, 1985; 158 (2): 554-7.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Developmental time, cell lineage, and environment regulate the newly synthesized proteins in sea urchin embryos., Pittman D., Dev Biol. November 1, 1984; 106 (1): 236-42.


Adhesive and migratory behavior of normal and sulfate-deficient sea urchin cells in vitro., Venkatasubramanian K., Exp Cell Res. October 1, 1984; 154 (2): 421-31.


Serum effects on the in vitro differentiation of sea urchin micromeres., McCarthy RA., Exp Cell Res. December 1, 1983; 149 (2): 433-41.


The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo., Harkey MA., Dev Biol. November 1, 1983; 100 (1): 12-28.


Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo., Katow H., Differentiation. January 1, 1982; 22 (2): 120-4.


Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos., Katow H., Exp Cell Res. December 1, 1981; 136 (2): 233-45.


Protease-insensitive sea urchin embryo cell adhesions become protease sensitive in the presence of azide or cytochalasin B., Bertolini DR., J Supramol Struct Cell Biochem. January 1, 1981; 15 (4): 327-33.


Methylation of nuclear proteins during early embryogenesis in sea urchin., Branno M., Boll Soc Ital Biol Sper. September 15, 1980; 56 (17): 1778-84.


[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]., Kocher-Becker U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.


Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo., Karp GC., Dev Biol. November 1, 1974; 41 (1): 110-23.


Treatment with lithium as a tool for the study of animal-vegetal interactions in sea urchin embryos., Runnström J., Wilhelm Roux Arch Entwickl Mech Org. September 1, 1971; 167 (3): 222-242.


Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules., Gibbins JR., J Cell Biol. April 1, 1969; 41 (1): 201-26.


Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape., Tilney LG., J Cell Biol. April 1, 1969; 41 (1): 227-50.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6