Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (281) Expression Attributions Wiki
ECB-ANAT-223

Papers associated with embryonic skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos., Kominami T., Dev Growth Differ. October 1, 1998; 40 (5): 545-53.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


Expression of Cyclophilin during the Embryonic Development of the Sea Urchin., Ohta K., Zoolog Sci. August 1, 1998; 15 (4): 547-52.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.


Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis., Zito F., Dev Biol. April 15, 1998; 196 (2): 184-92.


Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo., Ingersoll EP., Dev Biol. April 1, 1998; 196 (1): 95-106.


Temporal-spatial expression of two Paracentrotus lividus cell surface proteins., Romancino DP., Cell Biol Int. January 1, 1998; 22 (4): 305-11.


Characterization of the role of cadherin in regulating cell adhesion during sea urchin development., Miller JR., Dev Biol. December 15, 1997; 192 (2): 323-39.


Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis., Wei Z., Dev Biol. July 1, 1997; 187 (1): 71-8.


Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere., Yoshikawa S., Dev Growth Differ. June 1, 1997; 39 (3): 319-27.


Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus., Suzuki HR., Zoolog Sci. June 1, 1997; 14 (3): 449-54.


Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues., Guss KA., Development. May 1, 1997; 124 (10): 1899-908.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma., Klueg KM., Dev Biol. February 1, 1997; 182 (1): 121-33.


Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo., Hardin J., Dev Biol. February 1, 1997; 182 (1): 134-49.


Cloning and characterization of novel beta integrin subunits from a sea urchin., Marsden M., Dev Biol. January 15, 1997; 181 (2): 234-45.


Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo., Miller RN., Mech Dev. November 1, 1996; 60 (1): 3-12.


Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars., Amemiya S., Dev Genes Evol. September 1, 1996; 206 (2): 125-35.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function., Katow H., Rouxs Arch Dev Biol. May 1, 1996; 205 (7-8): 371-381.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.


Expression of the actin gene family in embryos of the sea urchin Lytechinus pictus., Fang H., Dev Biol. January 10, 1996; 173 (1): 306-17.


Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo., Malinda KM., Dev Biol. December 1, 1995; 172 (2): 552-66.


Characterization and localized expression of the laminin binding protein/p40 (LBP/p40) gene during sea urchin development., Hung M., Exp Cell Res. November 1, 1995; 221 (1): 221-30.


Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo., Ramachandran RK., Dev Dyn. September 1, 1995; 204 (1): 77-88.


Dynamics of thin filopodia during sea urchin gastrulation., Miller J., Development. August 1, 1995; 121 (8): 2501-11.


Alteration of Ca2+ homeostasis of sea urchin embryos by retinoid CD 367, dual effect on egg cleavage and embryonic development., Espagnet S., J Biochem Toxicol. June 1, 1995; 10 (3): 161-9.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule., Harkey MA., Dev Biol. April 1, 1995; 168 (2): 549-66.


Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study., Viebahn C., Acta Anat (Basel). January 1, 1995; 154 (2): 99-110.


Formation of sea urchin primary mesenchyme: cell shape changes are independent of epithelial detachment., Anstrom JA., Rouxs Arch Dev Biol. December 1, 1994; 204 (2): 146-149.


Selective inhibition of exoplasmic membrane fusion in echinoderm gametes with jaspisin, a novel antihatching substance isolated from a marine sponge., Ikegami S., J Biol Chem. September 16, 1994; 269 (37): 23262-7.


Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus., Akasaka K., J Biol Chem. August 12, 1994; 269 (32): 20592-8.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos., Armstrong N., Dev Biol. April 1, 1994; 162 (2): 329-38.


Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus., Hwang SP., Development. March 1, 1994; 120 (3): 559-68.


Protein-DNA interactions at putative regulatory regions of two coordinately expressed genes, msp130 and PM27, during skeletogenesis in sea urchin embryos., Raman V., Int J Dev Biol. December 1, 1993; 37 (4): 499-507.


Cell-cell interactions regulate skeleton formation in the sea urchin embryo., Armstrong N., Development. November 1, 1993; 119 (3): 833-40.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos., Anstrom JA., J Exp Zool. December 1, 1992; 264 (3): 312-22.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


The insertion of mesenchyme cells into the ectoderm during differentiation in Sea urchin embryos., Spiegel E., Rouxs Arch Dev Biol. October 1, 1992; 201 (6): 383-388.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???