Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (281) Expression Attributions Wiki
ECB-ANAT-223

Papers associated with embryonic skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Study of larval and adult skeletogenic cells in developing sea urchin larvae., Yajima M., Biol Bull. October 1, 2006; 211 (2): 183-92.


Molecular cytogenetic characterization of an ins(4;X) occurring as the sole abnormality in an aggressive, poorly differentiated soft tissue sarcoma., Surace C., Virchows Arch. November 1, 2005; 447 (5): 869-74.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


P16 is an essential regulator of skeletogenesis in the sea urchin embryo., Cheers MS., Dev Biol. July 15, 2005; 283 (2): 384-96.


UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos., Bonaventura R., Biochem Biophys Res Commun. March 4, 2005; 328 (1): 150-7.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O., Dev Biol. September 15, 2004; 273 (2): 226-43.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo., Fernandez-Serra M., Dev Biol. April 15, 2004; 268 (2): 384-402.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Focal adhesion kinase (FAK) expression and phosphorylation in sea urchin embryos., García MG., Gene Expr Patterns. March 1, 2004; 4 (2): 223-34.


Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo., Kiyomoto M., Dev Growth Differ. February 1, 2004; 46 (1): 107-14.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH., Methods Cell Biol. January 1, 2004; 74 273-85.


Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma., Kauffman JS., Dev Genes Evol. December 1, 2003; 213 (12): 612-24.


Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells., Ingersoll EP., J Exp Zool A Comp Exp Biol. December 1, 2003; 300 (2): 101-12.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis., Croce J., Mech Dev. May 1, 2003; 120 (5): 561-72.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus., Pesando D., Mar Environ Res. February 1, 2003; 55 (1): 39-57.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus., Illies MR., Dev Genes Evol. October 1, 2002; 212 (9): 419-31.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


Biomineralization of the spicules of sea urchin embryos., Wilt FH., Zoolog Sci. March 1, 2002; 19 (3): 253-61.


Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule., Peled-Kamar M., Exp Cell Res. January 1, 2002; 272 (1): 56-61.


An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos., Katow H., Dev Growth Differ. October 1, 2001; 43 (5): 601-10.


Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo., Huggins LG., Dev Growth Differ. August 1, 2001; 43 (4): 415-24.


A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo., Zhu X., Development. July 1, 2001; 128 (13): 2615-27.


Skeletogenesis in sea urchin interordinal hybrid embryos., Brandhorst BP., Cell Tissue Res. July 1, 2001; 305 (1): 159-67.


Pamlin-induced tyrosine phosphorylation of SUp62 protein in primary mesenchyme cells during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus., Katow H., Dev Growth Differ. October 1, 2000; 42 (5): 519-29.


Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis., Urry LA., Dev Biol. September 1, 2000; 225 (1): 201-13.


Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton., Kitajima T., Dev Growth Differ. August 1, 2000; 42 (4): 295-306.


Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains., Hodor PG., Dev Biol. June 1, 2000; 222 (1): 181-94.


Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin., Katow H., Dev Growth Differ. February 1, 2000; 42 (1): 9-17.


Homeobox genes and sea urchin development., Di Bernardo M., Int J Dev Biol. January 1, 2000; 44 (6): 637-43.


HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo., Kurokawa D., Zygote. January 1, 2000; 8 Suppl 1 S33-4.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


A putative role for carbohydrates in sea urchin gastrulation., Latham VH., Acta Histochem. July 1, 1999; 101 (3): 293-303.


Matrix and mineral in the sea urchin larval skeleton., Wilt FH., J Struct Biol. June 30, 1999; 126 (3): 216-26.


Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos., Ishii M., Dev Growth Differ. June 1, 1999; 41 (3): 241-52.


Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos., Di Bernardo M., Development. May 1, 1999; 126 (10): 2171-9.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos., Benson S., Mech Dev. March 1, 1999; 81 (1-2): 37-49.


Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos., Yamasu K., Dev Growth Differ. February 1, 1999; 41 (1): 81-91.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Biological effects of a neurotoxic pesticide at low concentrations on sea urchin early development. A terathogenic assay., Morale A., Chemosphere. December 1, 1998; 37 (14-15): 3001-10.


A protein of the basal lamina of the sea urchin embryo., Tesoro V., Dev Growth Differ. October 1, 1998; 40 (5): 527-35.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???